Analysis of Thermal Detection Prediction Capability of FDS

Alex Munguia SFPE, UMCP

FDS Validation

- Comparing FDS predictions to fullscale test conducted at UL
- Heptane burner located in center of room.
- Data of interest is temperature readings of heat detectors.

FDS Validation

- SFPE Task Group on Computer Model Evaluation
- Trends in DETACT-QS predictions were noticed
- Similar evaluation of FDS was of interest

Engineering Guide Evaluation of the Computer Fire Model **DETACT-OS** December 2002

Performance Based Design (PBD)

- Alternative to prescriptive based code solutions
- Validation work can be used by engineers to justify use of FDS in PBD

Materials and Methods

- Computer loaded with FDS v 4.05
 - -3.8 GHz Pentium 4
 - -3.2 GB RAM
- UL Test Publication

Full-Scale Test Setup

- Conducted at Underwriters Laboratories (UL)
- Moveable ceiling
- Heptane burner located at center
- Thermocouple trees placed at different distance from fire
- Exhaust fan above ceiling

Full-Scale Test Setup

- Heptane spray burner
 - Top of burner located 0.33 m from floor
 - "Modified" t-squared fire

Full-Scale Test Setup

- 6 different runs
 - One run for each ceiling height
- 4 thermocouple trees
 - 1 at plume centerline
 - -3 at different radial distances from fire

Slow, medium, fast disk thermocouple and 0.6025" Type K inconel sheathed thermocouple

FDS set up

- Input parameters
 - Room Dimensions
 - Fire size (HRRPUA)
 - Locations of burner, TCPs, and Heat
 Detectors
 - Thermal Characteristics, i.e.: specific heat, thermal diffusivity, etc.
 - Grid Sizing

FDS Grid Sizing

- Conversion to metric
- Wanted high resolution in vicinity of fire plume and heat detectors.
 - Grid stretched using TRNX & TRNY

FDS set-up

1. Smoke leaves computational domain through side boundary

2. Smoke leaves computational domain through ceiling boundary

FDS input

Special Issues

- Compartment has symmetric geometry
- Initially used MIRROR command
- Found out MIRROR is not applicable due to location of MIRROR plane and because of LES (Large Eddy Simulation)

Special Issues (cont.)

- Expected similar temperature prediction with different boundary conditions.
 - Found temperature differences of heat detectors between simulations ranging from 50 °C to 150 °C.
 - Currently addressing this topic

Uncertainty Analysis

- Experimental Uncertainty
 - Heptane Flow
 - Measuring Devices
 - Repeatability
- Type A and Type B Analysis used
- Propagation of Uncertainty
 - $-Q = m_f$ " $\times \Delta Hc$
- Model Uncertainty

Work to be completed

- Compile time-temperature curves for each trial run
- Compare FDS prediction with UL data in terms of uncertainty
- Analyze discrepancies in temperature readings
- Conduct grid sensitivity analysis

Insights Gained

- Many issues involved in FDS modeling
 - Trial runs are a must!
 - Long run times
 - Run times ranged from 2 days to 4 weeks.

